COT 6405 Introduction to Theory of
Algorithms

Topic 5. Master Theorem

9/17/2014

Solving the recurrences

e Substitution method
* Recursion tree
e Master method

The Master Theorem

* Given: a divide-and-conquer algorithm

— An algorithm that divides the problem of size n
into a subproblems, each of input size n/b

— Let the cost of each stage (i.e., the work to divide
the problem + combine solved subproblems) be
described by the function f(n)

* Then, the Master Theorem gives us a
cookbook for the algorithm’s running time

9/17/2014

The Master Theorem (Cont’d)

e If T(n) =aT(n/b) + f(n) then

T(n) =+

®(nlogba)

f (n) =0(n"®**)

(H)(n"’gba lg n) f(n)=(~)(n'°gba)

o(f (n))

f (n) =Q(n"***)AND

af (n/b) <cf(n) forlarge n

>0
c<l

The Master Theorem (Cont’d)

T(n) =aT(n/b) +f(n), wherea>1,b>1

Compare n'°%4 ys. f(n):
p

Casel: f(n) = O (n'°% =€) for some constant € > 0.
(f(n) 1s polynomially smaller than n'”gb“.)
Solution: T (n) = O (n'°% %),

(Intuitively: cost 1s dominated by leaves.)

The Master Theorem (Cont’d)

Case2: f(n) = O(n*%1g" n), where k > 0.
[This tonnu]anon of Case 2 1s more general than in Theorem 4.1, and 1t 15 given
in Exercise 4.6-2]
(f (n) 1s within a polylog factor of n'°84 but not smaller.)
Solution: T (n) = O(n '““b“lgwn.).
(Intuitively: cost is 7% 1g" n at each level, and there are ©(lgn) levels.)
Simple case: k =0= f(n)=0 (%9 = T(n) = O(n '”“b“lgn}.

The Master Theorem (Cont’d)

Cased: f(n)= Q (n'°%*€) for some constant ¢ > () and f(n) satisfies the regu-
larity condition af (n/b) < cf (n) for some constant ¢ < 1 and all sufficiently
large n.

(f (n) 1s polynomually greater than n
Solution: T (n) = O(f(n)).

(Intuitively: cost 1s domnated by root.)

log; a)

Using the Master Theorem, Case 1

e Solve T(n) =9T(n/3) + n
—a=9, b=3, f(n) =n
— nlogba = n|0839 = n2

— Since f(n) = O(n?-¢), where g=1, case 1 applies:
T(n) = @(n"’@‘ba)when f(n)= O(n"’gb ‘H)

— Thus the solution is T(n) = ©(n?)

Using the Master Theorem, Case 2

* T(n) =T(2n/3) + 1
—a=1, b=3/2,f(n)=1
—n'o8:3 = nlogs21 = n0 =1 > compare with f(n)=1
—Since f(n) = ®(n'°8:3)= (1), the simple form of
case 2 applies:

T (ﬂ) _ ®(nlogba Ig n)When f (n) = @(n|ogba)

—Thus the solution is T(n) = ®(lg n)

Using the Master Theorem, Case 3

* T(n) =3T(n/4) + nlgn
— a=3, b=4, f(n) = nlgn
— nlo8p a= plogs 3 - 30793 5 compare with f(n)=n Ig n
— Since f(n) = Q(n%773%¢), where £=0.207

* Also for c=3/4< 1, a*f(n/b) <= c*f(n)
—23(n/4)*Ig(n/4) <= (3/4)n Ig n

— case 3 applies:

T(n) =©(f (n))when f (n) = (n'%*)

— Thus the solution is T(n) = ®(n Ig n)

Exercises

* T(n) = 5T(n/2) +@(n?)
* T(n) =27 T(n/3) +6(n’ign)
* T(n) =5T(n/2) +0(n°>)

Exercises (cont’d)

* T(n) = 5T(n/2) +0(n?)
* a=5,b=2,f(n)=0(n%
e N2 € O(nlogz 5—8)

e Case 1, T(n) = ©(nl°82 5)

Exercises (cont’d)

T(n) = 27 T(n/3) +©@(n3lgn)
a=27,b=3,f(n)=0(n3lgn)

nlog3 27 _ Tl3

Case 2: k =1, and f(n) = © (n'°83 27|gn)
T(n) = © (n3lg*?n)

Exercises (cont’d)

T(n) = 5T(n/2) +O@(n>)
a=5b=2,f(n)=0(n3%)

n3 Q(nlogs 5+a)

Case 3, check the regularity condition
—af(n/b) = 5(2)3 =(5/8) n® < cn3 forc=5/8<1
T(n) = ©(n°)

Limitation of the Master Theorem

 Master Theorem does not apply to all f(n)!

— Gap between Case 1 and 2: f(n) is not
polynomially smaller than n'°8b @

— Gap between Case 2 and 3: f(n) is not
polynomially larger than nl°8» @

— The regularity condition in Case 3
T(n)=27T(n/3) 4+ O(n>/lgn)

P 3 ;. 2 _ — 2 - -
n'°s2’ = pd3vs. n?/lgn = ndlgn £ O’ 1gf n) for any k > 0.
Cannot use the master method.

Limitations (cont’d)

* Situations that don’t look anything like that of
the Master Theorem

e T(n) =2T(n-3) ++/n

What to do when it doesn’t apply

* The recursion-tree method

Jn
7 .
vn —3 vn — 3
> ST
n—=o6 n—=~6 n—=~6 n—=o6

Cont’d

* The sub-problem size for a node at depth i
isn — 3i

* The sub-problem size hits T(1), whenn — 3i=
l,ori=(mn—-—1)/3

* Thus, tree has 1+ (n-1)/3 levels (i =0,1,..., (n-
1)/3)

Cont’d

* Each node at level i has a cost of Vn — 3i

e Each level has 2! nodes
— Level 0: 1, level 1: 2, level 2:4, level 3: 8....

 Thus, the total cost of level i is 2!1vn — 3i

Cont’d

 The bottom level has 2("~1)/3 nodes, each
costing T(1)

* Assume T(1) = ¢y. The total cost of the bottom
level will be ¢y2("~1)/3

Cont’d

 We add up the costs over all levels to
determine the total cost for the entire tree:

n-—1

T(n) = 5-1 24n — 3i + ¢g2(n—1)/3

n—-1

<32, 20+ o2/

= —\n(1-20=D/3) 4 ¢,2(n—1)/3
=n2M=D/3 4 ¢, 2(0=1)/3 _\/n
= O(y/n2"/3)

Processing floors and ceilings

* T(n) =2T([n/2]) + n has the solution of T(n) =
O(nlgn)
* T(n)=2T(|n/2]) + n

< 2T (3) + n - >0O(nlgn)
* T(n)=2T(|n/2]) + n
> 2T (—— 1)

—ZT()+(n -2) +2 - > Q(nlgn)

Processing floors and ceilings
(cont’d)

* T(n) =2T(|n/2]) + n has the solution of T(n) =
O(nlgn)
* T(n)=2T([n/2]) +n

<2T(Z+1)+n

=2T (n7+2) + (n +2)-2- > Q(nlgn)
T(n)=2T([n/2]) + n

> 2T (3) +n —>0(nlgn)

