
COT 6405 Introduction to Theory of 
Algorithms

Topic 5. Master Theorem

9/17/2014 1



Solving the recurrences

• Substitution method

• Recursion tree

• Master method

9/17/2014 2



The  Master Theorem 

• Given: a divide-and-conquer algorithm

– An algorithm that divides the problem of size n
into a subproblems, each of input size n/b

– Let the cost of each stage (i.e., the work to divide
the problem + combine solved subproblems)  be 
described by the function f(n)

• Then, the Master Theorem gives us a 
cookbook for the algorithm’s running time

9/17/2014 3



The Master Theorem (Cont’d)

• If  T(n) = aT(n/b) + f(n) then

9/17/2014 4

 

 

 

 

 

 

























































1

0

largefor )()/(

      AND )(

)(

)(

)(

log)(

log

log

log

log

log

c

nncfbnaf

nnf

nnf

nOnf

nf

nn

n

nT

a

a

a

a

a

b

b

b

b

b







lg n



The Master Theorem (Cont’d)

T(n) = aT(n/b) + f (n), where a ≥ 1, b > 1

5



The Master Theorem (Cont’d)

6

4.6-2]



The Master Theorem (Cont’d)

7



Using the Master Theorem, Case 1

• Solve T(n) = 9T(n/3) + n

– a=9, b=3, f(n) = n

– nlogb a = nlog3 9 = n2

– Since f(n) = O(n2 - ), where =1, case 1 applies:

– Thus the solution is T(n) = (n2)

9/17/2014 8

   
aa bb nOnfnnT

loglog
)( when )(



Using the Master Theorem, Case 2

• T(n) = T(2n/3) + 1

– a=1,  b=3/2, f(n) = 1

–nlogb a = nlog3/2 1 = n0 = 1  compare with f(n)=1

– Since f(n) = (nlogb a)= (1), the simple form of 
case 2 applies:

– Thus the solution is T(n) = (lg n)

9

   aa bb nnfnnnT
loglog

)( when lg)( 



Using the Master Theorem, Case 3

• T(n) = 3T(n/4) + n lg n
– a=3,  b=4, f(n) = nlgn

– 𝑛log𝑏 𝑎= 𝑛log4 3 = n 0.793
 compare with f(n)=n lg n

– Since f(n) = (𝑛0.793+𝜀), where =0.207

• Also for c=3/4 < 1 , a*f(n/b) <= c*f(n) 
3(n/4)*lg(n/4) <= (3/4)n lg n

– case 3 applies: 

– Thus the solution is T(n) = (n lg n)

9/17/2014 10

   
abnnfnfnT

log
)( when )()(



Exercises

• T(n) =  5T(n/2) +Θ 𝑛2

• T(n) = 27 T(n/3) +Θ 𝑛3𝑙𝑔𝑛

• T(n) = 5T(n/2) +Θ(𝑛3)

9/17/2014 11



Exercises (cont’d)

• T(n) =  5T(n/2) +Θ(𝑛2)

• a = 5, b = 2, f(n) = Θ(𝑛2)

• 𝑛2 ∈ 𝑂 𝑛log2 5−

• Case 1, T(n) = Θ( 𝑛log2 5)

9/17/2014 12



Exercises (cont’d)

• T(n) = 27 T(n/3) +Θ 𝑛3𝑙𝑔𝑛

• a = 27, b = 3, f(n) = Θ 𝑛3𝑙𝑔𝑛

• 𝑛log3 27 = 𝑛3

• Case 2: k = 1, and f(n) = Θ (𝑛log3 27lgn)

• T(n) = Θ (𝑛3𝑙𝑔2n)

9/17/2014 13



Exercises (cont’d)

• T(n) =  5T(n/2) +Θ(𝑛3)

• a = 5, b = 2, f(n) = Θ(𝑛3)

• 𝑛3 ∈ Ω 𝑛log2 5+

• Case 3,  check the regularity condition

– a f(n/b) = 5(
𝑛

2
)3 = (5/8) 𝑛3 ≤ c𝑛3 for c = 5/8 <1

• T(n) = Θ(𝑛3)

9/17/2014 14



Limitation of the Master Theorem

• Master Theorem does not apply to all f(n)!

– Gap between Case 1 and 2: f(n) is not 

polynomially smaller than 𝑛log𝑏 𝑎

– Gap between Case 2 and 3: f(n) is not 

polynomially larger than 𝑛log𝑏 𝑎

– The regularity condition in Case 3

15



Limitations (cont’d)

• Situations that don’t look anything like that of 
the Master Theorem

• T(n) = 2T(n-3) + 𝑛

9/17/2014 16



What to do when it doesn’t apply

• The recursion-tree method

9/17/2014 17

𝑛

𝑛 − 3 𝑛 − 3

𝑛 − 6 𝑛 − 6 𝑛 − 6 𝑛 − 6

T(1) ……



Cont’d

• The sub-problem size for a node at depth i
is 𝑛 − 3𝑖

• The sub-problem size hits T(1), when 𝑛 − 3𝑖= 
1, or 𝑖 = (𝑛 − 1)/3

• Thus, tree has 1+ (n-1)/3 levels (i = 0,1,…, (n-
1)/3 )

9/17/2014 18



Cont’d

• Each node at level i has a cost of 𝑛 − 3𝑖

• Each level has 2𝑖 nodes

– Level 0: 1,  level 1: 2, level 2:4, level 3: 8….

• Thus, the total cost of level i is 2𝑖 𝑛 − 3𝑖

9/17/2014 19



Cont’d

• The bottom level has 2(𝑛−1)/3 nodes, each 
costing T(1)

• Assume T(1) = 𝑐0. The total cost of the bottom 

level will be 𝑐02
(𝑛−1)/3

9/17/2014 20



Cont’d
• We add up the costs over all levels to 

determine the total cost for the entire tree:

T(n) =  
𝑖=0

𝑛−1

3
−1
2𝑖 𝑛 − 3𝑖 + 𝑐02(𝑛−1)/3

≤  
𝑖=0

𝑛−1

3
−1
2𝑖 𝑛 + 𝑐02(𝑛−1)/3

= − 𝑛(1-2(𝑛−1)/3) + 𝑐02(𝑛−1)/3

= 𝑛2(𝑛−1)/3 + 𝑐02(𝑛−1)/3 - 𝑛

= O( 𝑛2𝑛/3)

9/17/2014 21



Processing floors and ceilings

• T(n) = 2T( 𝑛/2 ) + n has the solution of T(n) = 
Θ(𝑛𝑙𝑔𝑛)

• T(n ) = 2T( 𝑛/2 ) + n 

≤ 2T
𝑛

2
+ 𝑛 - > O(nlgn)

• T(n ) = 2T( 𝑛/2 ) + n 

≥ 2T
𝑛

2
− 1 + 𝑛

= 2T
𝑛−2

2
+ (𝑛 -2) +2  - > Ω(nlgn)

9/17/2014 22



Processing floors and ceilings 
(cont’d)

• T(n) = 2T( 𝑛/2 ) + n has the solution of T(n) = 
Θ(𝑛𝑙𝑔𝑛)

• T(n ) = 2T( 𝑛/2 ) + n

≤ 2T
𝑛

2
+ 1 + 𝑛

= 2T
𝑛+2

2
+ (𝑛 +2) -2 - > Ω(nlgn)

• T(n ) = 2T( 𝑛/2 ) + n

≥ 2T
𝑛

2
+ 𝑛 −> 𝑂(𝑛𝑙𝑔𝑛)

9/17/2014 23


